Разработка импульсных источников сейсмических сигналов

Разработка импульсных источников сейсмических сигналов

Разработка импульсного источника питания (ИИП) представляет собой целый комплекс научно-исследовательских и опытно-конструкторских работ. Найденный учеными технологический принцип импульсного преобразования дал ИИП неоспоримые преимущества в сравнении с устаревающими стабилизаторами трансформаторного типа. Однако усложненность схем импульсных преобразователей требует от инженеров КБ особых подходов к устранению недостатков, которые неизбежно присутствуют в каждом виде ИИП.

Конструкция

Базовая схема всех ИИП предполагает наличие трех функциональных узлов: накопитель энергии, узел управления и коммутационное устройство для электрической цепи. В пределах данной схемы компонентная структура разрабатываемого образца может быть разнообразной. При этом большинство источников питания импульсного типа в основе своей конструкции могут использовать следующие компоненты:

При разработке ИИП, рассчитанного под определенные условия эксплуатации, помимо базовых элементов его структуры, в конструкцию ИИП могут быть добавлены и другие компоненты. Инженеры конструкторского бюро «Примод» готовы взять в разработку любой требуемый образец импульсного преобразователя, независимо от сложности поставленной задачи.

Принцип действия

Основная задача разработки любого импульсного преобразователя — это создание источника импульсного напряжения с высокой частотой. Классическая схема ИИП использует следующий принцип работы:

  • Подаваемый из первичного источника питания переменный электрический ток сначала поступает в фильтр, снижающий сетевые помехи.
  • Далее «очищенное» от помех электричество поступает в преобразовательный блок, где синусоидальное напряжение трансформируется в постоянное импульсное. На выходе электричество часто прогоняется через сглаживающий фильтр.
  • Затем импульсы постоянного тока попадают в инвертор, где они приобретают форму высокочастотного сигнала. Эффект достигается благодаря его ключам, которые (открываясь и закрываясь) подают электрическое питание в обмотку порциями.
  • После этого высокочастотный электрический сигнал поступает в блок ИТ, обеспечивающий гальваническую развязку. К этому блоку запитывают цепи управления, защиты и нагрузки.
  • Затем обработанное электричество попадает в выходной выпрямитель. Прибору необходимо выпрямить трансформированное (во вторичной обмотке) напряжение.
  • На конечном этапе выпрямленное напряжение попадает в еще один сглаживающий фильтр. В нем могут применяться как стандартные емкости, так и емкости индуктивности.

Разработка подобной схемы позволила получить прибор небольших габаритов и с малым весом. Этому способствовало важное свойство блока ИТ, чей размер обратно пропорционален его рабочей частоте. Также разработка импульсного принципа работы помогла источнику питания использовать регулирующий элемент меньшей мощности и радиатор меньших габаритов. В результате получился прибор более компактный и эффективный, чем предшествовавший ему трансформаторный ИП с линейным стабилизатором.

Однако появление этого нового типа источника питания поставило перед инженерами задачи по минимизации сопутствующих ему недостатков: помехи на входе и выходе, нестабильность напряжения, входное отрицательное сопротивление, ограниченный коридор рабочей мощности. Это способствовало появлению различных видов ИИП, оптимально подходящих для работы с конкретным оборудованием и с определённым типом электросети.

Виды импульсного преобразователя

Многочисленные эксперименты с конструкциями ИИП создали многочисленные образцы, которые можно разделить на две категории: с импульсным трансформатором (блок ИТ) и с накопленной индуктивностью. В рамках этих категорий различные модификации импульсных преобразователей образовали следующие условные виды:

  • Образец с триггером Шмитта.
  • Образец с широтно-импульсной модуляцией.
  • Образец с частотно-импульсной модуляцией.
  • Образец с диодами Шоттки.
  • Образец с оптопарой.
  • ИИП со схемой понижения напряжения.
  • ИИП со схемой повышения напряжения.
  • ИИП с инвертирующей (понижающе-повышающей) схемой.
  • Однополярные источник питания с одним уровнем напряжения.
  • Однополярный источник питания с несколькими уровнями напряжения.
  • Двуполярный источник питания.
  • Стабилизированные преобразователи.
  • Нестабилизированные преобразователи.
  • Регулируемые (лабораторные) преобразователи.

Помимо условного деления видов ИИП по конструкционным схемам и свойствам, сами компоненты приборов также обладают разнообразием модификаций. Например, инверторы могут быть однотактными, мостовыми, полумостовыми или пуш-пульными. Такое многообразие уже готовых чертежных элементов открывают широчайшие возможности для инженерной разработки требуемых образцов.

Сферы применения

Преобразователь импульсного типа с самого момента своего появления начал вытеснять своего трансформаторного предшественника практически отовсюду, где требуется выравнивание электропитания. На текущий момент ИИП уже монополизировал следующие технологические позиции:

  • Офисная электроника: компьютеры, принтеры.
  • Домашняя электроника: телевизоры, стиральные машины, микроволновки.
  • Малогабаритные электронные устройства на интегральных микросхемах: ноутбуки, планшеты, гаджеты, зарядные приспособления.
  • Промышленное оборудование.
  • Устройства аккумуляторного типа: автоэлектроника, полевая радиоэлектроника, строительная сварка, компактные электроинструменты. ИИП преобразует постоянный ток аккумулятора в переменный.
  • Лабораторная электроника НИИ.
  • Военная техника.
  • Приборы в самолетах, поездах, судах.
  • Электроника наземных станций слежения.

Такая чрезмерная популярность ИИП в различных сферах обусловлена возможностью импульсных стабилизаторов не только понижать напряжение, но и повышать его и даже менять полярность.

Разработка импульсного преобразователя от ООО Фирма «Примод»

Компания «Примод» предлагает осуществить полноценный НИОКР импульсного источника питания с помощью нашего уникального конструкторского бюро и на базе наших экспериментальных площадок. Мы собрали в своем штате лучших инженеров под руководством известного ученого-изобретателя Феликса Исааковича Оменцова. Наши специалисты разработают вам индивидуальное конструкторское решение, оптимально подходящее под предполагаемые условия работы ИИП. Все создаваемые образцы проходят испытания в точно воспроизведенных условиях эксплуатации источников питания. Качество НИОКР гарантировано многолетним научно-исследовательским опытом наших специалистов и четко налаженной схемой контроля над всеми стадиями опытно-конструкторских работ.